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Curvature Calculations with GEOCALC

A. Moussiaux' and Ph. Tombal'
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A new method for calculating the curvature tensor has been recently proposed
by D. Hestenes. This method is a particular application of geometric calculus,
which has been implemented in an algebraic programming language on the form
of a package called GEOCALC. We show how to apply this package to the
Schwarzchild case and we discuss the different results.

1. INTRODUCTION

In a recent paper Hestenes (1986) applied a new method for calculating
the curvature tensor in the Schwarzchild case. The method is an application
of geometric calculus and Clifford algebra (Hestenes and Sobcszyk, 1984).
The fundamental concepts of geometric calculus are multivectors and
geometric products, from which other products, such as the dot product,
outer product, and scalar product, are particular cases.

Most computations in general relativity are usually performed in an
algebraic programming language,’ and are based on the same theoretical
background.

Geometric calculus is a nonconventional method having a larger range
of applications than the tetrad formalism or exterior calculus, for example.
Implementation of geometric calculus in an algebraic programming
language provides a powerful tool for theoretical investigations. In a pre-
vious paper (Tombal and Moussiaux, 1986) we explained how the funda-
mental operations of geometric calculus have been implemented in
MACSYMA, creating a package called GEOCALC. Adding a derivative to
GEOCALC allowed us to create a new package devoted to curvature
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calculations using the general method of “fiducial frame” developed by
Hestenes and Sobczyk (1984). This package revealed some computational
errors in Hestenes (1986), showing, if it is still necessary, the advantages
of algebraic computation compared with a human one.

In Section 2 we recall briefly the principles of the “fiducial frame” and
how it is adapted to our own computation. In Section 3 the generalized
gradient operator is introduced. Section 4 recalls how to compute the
curvature, Riemann, and Ricci tensors following Hestenes (1986). Section
5 explains how the quantities of Section 4 are translated in GEOCALC. In
Section 6 we compare our results with those of Hestenes (1986).

2. THE “FIDUCIAL FRAME” METHOD

According to Hestenes (1986), the fiducial frame {v;} is related to the
coordinate frame {g;} by a fiducial tensor

g = h;’)’.' (1)
The components of the metric tensor are given by
8i=8&" & (2)

The fiducial frame is orthogonal; then

Yi* Y = M0y (3)
where 7; is the signature indicator.

Relation (3) shows that for i =j the dot product of the two vectors
and v; gives the scalar 7;. Following Hestenes, the geometric product of ;
and v; is given by

VY=Y Gt viay : (4)
If the vectors v; and v; are chosen such that vy, A y; =0, comparison of (3)
and (4) forces us to choose a Clifford algebra essentially determined by the
signature indicator 7;.

The v, are chosen to be four l-vectors expressed, as explained in
Tombal and Moussiaux (1986), in terms of blades in the following way:

v =@(1, [i]) (5)

so that the relations (3) are automatically satisfied.
A reciprocal frame y’ is defined such that

ity =8 (6)
These vectors are represented by
¥ =@(n;, [j]) (7)
Here the y; and y/ are constant vectors.
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In Hestenes’ notations a diagonal metric in a Lorentz tetrad can always
be written

ds®= Zjlo 7:(h;)*(dx’)? (8)

where the h; are function of the coordinates (x°, x', x, x*). In this case the
fiducial tensor is very simple, so that the coordinate frame is given by

g&=@(h,[i]) (9)
and the corresponding reciprocal coordinate frame is
g’ =@(nh; ", [jD) (10)

It is clear that (10) and (11) satisfy the relations (2) defining the metric g;
as well as the relation

g g’ =8l (11)

3. THE DIFFERENTIAL OPERATORS

With a set of scalar coordinates (x°, x', x°, x*) we can always construct
a 1-vector differential operator

d=(89,9,,0,03) (12)

This operator behaves like any other 1-vector with respect to the operations
defined in geometric calculus. But of course d must have also the usual
properties of a differential operator.

If the metric is given by (8), the relevant differential operator is

Dz(')’i/hi) ai=gi d; (13)
We easily check that the fiducial frame is related to the coordinates by
;= m:h; Ox' (14)

where there is no summation on the index i.

Equation (13) shows that O is nothing else than a generalization of
the gradient operator. This operator has the same vectorial and differential
properties as d.

4. THE CURVATURE COMPUTATION

Following Hestenes (1986), the curvature tensor evaluated on the
bivector g; A g; is given by

w; = diw; — diw; + w; X w; = R(gi r g;) (15)
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where the fiducial derivative dyw; must be computed with

diwjzai(hlzl 3khj)7j/\ ')’k (16)
and where the connection bivectors w; are defined by
w,-=‘yiADhi ' (17)

In (15) the symbol X stands for the cross product defined by AXxB=
(AB— BA)/2. In a natural base the covariant components of the Riemann
tensor are related to the curvature tensor R by

Rijkl:(gj/\gi) “R(ge A g1) (18)
and the covariant components of the Ricci tensor are given by
Ry=(ging") - R(gcng) (19)

where a summation on the index k is assumed. All these relations can be
written in a coordinate base as well as in a noncoordinate one.

5. COMPUTING FACILITIES

Here we give a translation of the equations of Section 4 into notation
understood by GEOCALC. Let us recall that a point stands for the inner
product, a tilde (~) stands for outer product, a vertical bar stands for
geometric product, and the {,} stand for the cross product (Tombal and
Moussiaux, 1986). When products involve the differential operators d and
[/l the previous symbols must be “doubled.”

Additions and differences are performed by the operators ++ and — —.

Formula (17) becomes

om[i]:= gad[i]~ (grad|| [i])
The curvature tensor (15) is given by
r[i,j]=doml[i, j]— —doml[j, i]++crom[i, j]
where
dom[, j]:= msum((d[:}| (hinv[k]|(d[k][[R[;])))
|(gad[ j]1~ gau[k]), k, %indx)
and where
, crom[i, j]:= {om[i], om[j]} (20)
The components of the Riemann tensor are computed in the following way:
rie[i, j, k, 11:=(gd[j]~gd[i]).r[k, I]

In these formulas gd[ j] stands for g;, gad[i] stands for ;. Comparison with
the relations of Section 4 gives readily the meaning of the other symbols.
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6. DISCUSSION OF THE RESULTS

First of all, our results are in full accordance with those obtained by
the program CTENSR (a package for tensor manipulations written in
MACSYMA), but there are some results that do not agree with those of
Hestenes (1986). :

Computation of (20), which corresponds to equations {36) in Hestenes
(1986), gives the following results:

cromy; =@(0,[ 1)

% e®M dphi/ dx%

crom.= @ <sin(x%2) ({; e;hm cjg)hi/dx%l’ [0, 3])

crom; , = @(%, [0, 2])

crom, , = @(sin(x"/ozz/ociel;rin/ dx%o’ [0, 3])

crom,; = [@(—%, [1, 3]) , @(%f—:%, [2, 3])}

We see that the two first equations are in agreement with those of Hestenes,
but the sign of the last three are different.

On the other hand, our results are in full agreement with equations
(37) in Hestenes (1986) provided that we use the relation (16) or the general
relation (22) in Hestenes (1986) instead of (31) in Hestenes (1986).

Note that in addition to (37) in Hestenes (1986) we find two other
nonvanishing equations d,w, and d,w,:

dom0,0 — @( —-9% ePhi—lam

[( dphi_dlam) dphi d’phi ] o 1])
dx%o dxo/()o deAJ] dx%odx(%)l Th

dom, = @< % e'2™Phi

(dlam dphi dlam dlam  d’lam ) [0 1])
dx%o dx%1 dx%() dx%1 d.xo/Oo dx0/01 ’ ’ .
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Consequently, the relations (38) in Hestenes (1986) giving the componerits
of the curvature tensor (15) are also different and w,, and w,, must be
replaced by

0= e¢r')’0 A ('}’r/\,tr_1 e 7 - '}’tr_»l‘ls,r 6_2/\)
wy=e®sin 0y, Alyd e =y, e7)
If we want to obtain the correct components of the Riemann and Ricci
tensors, the expressions (39) in Henstenes (1986) must be computed using
the quantities modified as explained above.

7. CONCLUSIONS

Despite inevitable computational errors, the “fiducial frame” method
proposed by Hestenes (1986) is a powerful means of investigation in general
relativity because it combines the facilities of Cartan’s method with the
systematic character of usual tensorial analysis. From these computational
points of view, Hestenes’ method has the great advantage of allowing
“punctual” calculations, that is, any component of a given tensor may be
computed independently.

This method is a particular application of geometrlc calculus (Hestenes
and Sobcszyk, 1984) based on Clifford algebra, whose field of investigation
extends largely beyond general relativity.

In a previous paper (Tombal and Moussiaux, 1986) we showed how
we implemented geometric calculus in a package called GEOCALC written
in MACSYMA. In this paper we showed an application of the package
GEOCALC to the “fiducial frame” method. Other metrics (Robertson-
Walker, for instance) have also been investigated and the results provided
by GEOCAL are in full accordance with those obtained using different
computational methods.
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